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Electrorefiner (ER) is the heart of pyroprocessing technology which contains different fission, rare-earth,
and transuranic chloride compositions during the operation. This is still a developing technology that
needs to be advanced for the commercial reprocessing design of used nuclear fuel (UNF) in terms of intel-
ligent materials detection and accountability towards safeguards. A novel signal detection, artificial neu-
ral network (ANN), has been proposed in this study to apply on massive ER systemic parameters to
simulate cyclic voltammetry (CV) graphs for the unseen situation. ANN could be trained to mimic the sys-
tem by driving the data sets interrelation between variables to provide current and potential simulated
data sets with a high accuracy of prediction. For this purpose, over 230,000 experimental data points
reported in literature have been explored—0.5–5 wt% of zirconium chloride (ZrCl4) in LiCl-KCl molten salt
with different scan rates at 773 K. This study has illustrated a new framework of ANN implementation to
eliminate trial and error approach by comparing the average error of one to three hidden layers with dif-
ferent number of neurons. In addition, this framework results in finding a preferable balance between
underfitting and overfitting in deep learning. Furthermore, simulated CV graphs were compared with
the experimental data and illustrated a reasonable prediction. The results reveal two structures with
three hidden layers providing a good prediction with a low average error. The outcomes indicate that
ANN has a strong potential in applying toward safeguards for pyroprocessing technology.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Pyroprocessing represents an alternative method for recycling
Integral Fast Reactor fuel which separates the actinide elements
from fission products (Laidler et al., 1997). This actinide recovery
process of used nuclear fuel (UNF), which was initially developed
at the Argonne National Laboratory (ANL), can be implemented
via electrorefinery with dynamic compositions of molten salt dur-
ing the process (Koch, 2008; Simpson and Law, 2010). For this pur-
pose, the electrochemical behavior of actinide is necessary for a
continuous monitoring routine. The composition analysis in ER
can be measured by a common practice at the national laboratory
level such as inductively coupled plasma mass spectrometry
(ICP-MS). However, the extraction process, material transfer,
and sample preparation may take up to several weeks due to
radiation transferred process from the main operating facility to
radiochemistry laboratory and analytical preparation routines—
these routines do not fulfill the near real time monitoring goal
(Williams, 2016). Therefore, laser-induced breakdown spec-
troscopy (LIBS), Ultraviolet–visible spectroscopy (UV–Vis), and
electrochemistry techniques (cyclic voltammetry (CV), chronopo-
tentiometry, anodic stripping voltammetry, etc.) have been
proposed as alternative techniques through the funding supports
from the Department of Energy – Nuclear Energy University
Program. These techniques can monitor the behavior of ER
contains in the microsecond to 10 min; however, they still have
some difficulties and are under developments.

One of the experimental electrochemical method which has
been broadly utilized to measure thermodynamic behavior of ura-
nium and zirconium within ER is CV (Evans et al., 1983; Kissinger
and Heineman, 1983; Mabbott, 1983; Nicholson, 1965). This tech-
nique has been broadly proposed and utilized due to two main rea-
sons: (1) its straightforwardness as a part of measuring apparent
standard potentials, numbers of electrons transferred, and diffu-
sion coefficients (Evans et al., 1983; Kissinger and Heineman,
1983; Mabbott, 1983) and (2) its simplicity in setup and fast
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Fig. 1. Multi-layer perceptron schematic (Wijayasekara et al. (2011)).

Fig. 2. Overfitting in learning (Burden and Winkler, 2009).
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response time with functionality to directly evaluate reversibility
and irreversibility for both the anodic and cathodic reactions of
various species (Heinze, 1984; Nicholson, 1965; Oark et al., 2014).

Presently, there are several available commercial CV software
packages providing the current versus potential diagram (for
examples, Bio-logic EC-Lab, and Power CV). However, some of
these packages cannot be used to trace different species without
Fig. 3. A multilayer perceptron network with on
experimental data sets in a relatively short time. Therefore, this
issue has become a huge concern and a great need in improvement
of nuclear material detection and accountancy (Hoover, 2014; Bio
Logic Science Instrument, 2016). Although there are few (for exam-
ple, BASiDigiSim Simulation) that have been developed to identify
these species, analyses using them may require many hours to
obtain the final outputs defeating the original purpose of a real
time detection intention. Recently, two research teams have joined
their effort to develop an analytical cyclic voltammetry study
which uses a nonlinear least square procedure to fit a BET (multi-
layer adsorption) model on the experimental data to trace the spe-
cies. However, this study, which considered the adsorption effect
of electrodes, is limited to a high standard reaction rate and simi-
larity oxidant and reductant diffusivity. Also, the diffusion values
calculated with the BET model were considerably larger than those
with the Delahay equation (Samin et al., 2016, 2015).

The aforementioned issues provide a motivation to this study
for developing an interactive modified diffusion method. To test
its capability and methodology, zirconium (Zr), which was one of
the major components in Experimental Breeder Reactor-II used
metallic fuel was selected. In addition, due to the complexity in
Zr cyclic voltammogram data sets, an artificial neural network
(ANN) was proposed as another novel data analytical tool provid-
ing a simulation method that could be applied on massive experi-
mental data sets. ANN is a novel data analysis and simulation
method that can be applied to electrochemical data sets and is
inspired by brain neural neurons (Lahiri and Ghanta, 2010;
Kriesel, 2007). Due to similarity between a computer machine
and biological system, it has been discovered that the computer
has its capability of learning by training samples (Kriesel, 2007).
ANN can be implemented to learn massive training data set
through iterations and interrelationships among system variables
such as currents, potentials, concentrations, scan rates, processing
times, and weight percent, without requiring the specific knowl-
edge to predict the desire cyclic voltammetry (CV) graph which
have not explicitly trained (Lahiri and Ghanta, 2010; Kriesel,
2007; Ridluan et al., 2009; Wijayasekara et al., 2011). One unique-
ness of using ANN is its capability with non-linear, noisy, and
uncertain data sets, which is invaluable for modeling, prediction,
and optimization towards detection and material accountability
in nuclear safeguards (Lahiri and Ghanta, 2010; Kriesel, 2007;
Ridluan et al., 2009; Wijayasekara et al., 2011; Manic and
Sabharwall, 2011).

Here, a huge experimental data set of 0.5–5 wt% of ZrCl4 in LiCl-
KCl eutectic molten salt at 773 K under different scan rates (over
231,000 data points) collected and reported by Hoover (2014)
and Hoover et al. (2014) was being considered. ANN was imple-
mented on the cyclic voltammetry (CV) to find a structure that pro-
vided a minimum error while predicting unseen data sets. All
experimental runs that were conducted and reported by Hoover
(2014) and Hoover et al. (2014) contained the following vari-
ables—potential, current, and time at specific concentration and
scan rate. The overall goal was to determine the structures that
e hidden layer (Araromi and Afolabi, 2007).
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ANN could be used to predict different systematic situations; the
tasks were to determine (1) the minimum training data set
requirement for achieving the lowest error, (2) the adequate num-
bers of hidden layers, (3) neurons at each layer, and (4) number of
validation checks provides a minimum error. It was expected to
apply this work to trace the operating current versus potential of
a case with inadequate input information by interpolating between
known information giving a low present error.

2. Methodology

The work was accomplished by implementing the ANN through
the commercial software package, Matlab. One type of ANN that
Fig. 4. Input and output v

Table 1
Experimental data set for ZrCl4 in LiCl-KCl at 773 K.

Fig. 5. Procedure flow chart showing A
has been used widely is called multi-layer perceptron (MLP). It is
consisted of one input layer, various hidden layers and one output
layer, which are interconnected by a number of nodes called neu-
rons. Fig. 1 demonstrates the schematic of the MLP at ANN
(Wijayasekara et al., 2011). Here, the experimental data sets (input
data) were divided into three main parts: (1) training data set
which was a partial of whole experimental data sets for adjusting
the weights and bias; (2) validation data set which is an indepen-
dent data set from training sample but can be regarded as a part of
training data sets because it has been used in training phase to
minimize the overtraining scheme; and (3) the leftover data sets
were related to the test data sets to assess the system performance.
Adding of additional hidden layer and increasing the number of
ariables of the ANN.

NN scheme finding hidden layers.



Fig. 6. One hidden layer with 1–30 neurons and 1–30 validation checks for 0.5 wt% at 200 mV/s and 450 mV/s (Black circle = short simulation time; Red circle = long
simulation time). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Two hidden layers with 1–30 neurons and 1–30 validation checks for 0.5 wt% at 200 mV/s and 450 mV/s in three structures; (a) [8, 1–30], (b) [9, 1–30], and (c) [10, 1–
30] (Black circle = short simulation time; Red circle = long simulation time). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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neurons within each layer enhanced the neural network complex-
ity is expected to improve prediction resulting in a lower error for a
fixed training data set. It is important to consider that if the num-
ber of layers goes up to four layers in this study, the overfitting can
occur and the run time increases significantly, therefore defeating
the purpose of achieving a fast and robust detection method. For
this reason, several validation checks have been considered repre-
senting the number of consecutive iterations that system perfor-
mance fails to decrease and it is different from the total
iterations of system training. The use of validation here was related
to ANN assessment and should not be confused by verification and
validation (V&V) (Taylor et al., 2003). In theory, overfitting happens
when the system begins to memorize the training data set rather
than learning (Siriphala, 2000); that is, the validation error starts
to increase after an optimal situation (see Fig. 2) and the training
error goes down gradually while the test error increases progres-
sively (Lawrence et al., 1997; Baskin et al., 2006). Fig. 2 shows that
the best predictive model is where the validation error (e) reaches
a global minimum (Burden and Winkler, 2009; Gardner and
Dorling, 1998).

Here, inputs with the MLP network were weighted (wji) and
summed up with the constant bias term (hi), as shown in Fig. 3.
This approach yielded the resulting data (ni) input to the activation
Fig. 8. Three hidden layers with 1–30 neurons and 1–30 validation checks for 0.5 wt% a
(Black circle = short simulation time; Red circle = long simulation time). (For interpretati
version of this article.)
function (g(ni)), giving the outputs (yi) (Araromi and Afolabi, 2007).
It is important to mention that each experimental data set is con-
sisted of the following variables—potential, process time, concen-
trations and scan rates as the input data and current as the
output. The input and output variables are shown in Fig. 4. The hid-
den layer comprised of neurons arrays that received, transformed,
and transferred the signal from the previous layer. The signals from
the input and hidden layer to the output layer were modeled by an
activation function which was generally linear, hyperbolic tangent,
and sigmoid (Planche and Cordeiro, 2015). The ANN feature in the
Matlab software was written based on the sigmoid function of
these hidden layers.

Over the recent decades, various algorithms for determining the
network parameters such as weight values have been developed.
Based on the literature reported, the most well-known are back-
propagation algorithm (BPA) and Levenberg-Marquardt algorithm
(LMA). Here, LMA is more efficient due to its fast process time
and can provide an adequate way for curve-fitting problems
because of interpolating between two method of Gauss-Newton
algorithm (GNA) and Gradient Descent (Araromi and Afolabi,
2007; Gavin, 2016). The gradient descent method can be used to
find a local minimum of a function by reducing the sum of the
squared errors with updating the parameters in the steepest-
t 200 mV/s and 450 mV/s in three structures; (a) [8, 13, 1–30], and (b) [8, 17, 1–30]
on of the references to colour in this figure legend, the reader is referred to the web
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descent direction. However, the sum of the squared errors in the
Gauss-Newton method is reduced by assuming that the least
squares function is locally quadratic—finding the minimum of the
quadratic (Araromi and Afolabi, 2007).

Because this work focused on the minimum number of training
data that could provide a reasonable predicted error, different
training combinations have been explored. It was found that this
Fig. 9. Three hidden layers with 1–30 neurons and 1–30 validation checks for 0.5 wt% at
21, 1–30] (Black circle = short simulation time; Red circle = long simulation time). (For in
the web version of this article.)
work could be implemented with 43% of total experimental data
set at a specific and fix combination. These results are listed in
Table 1 keeping in mind that the total experimental data points
are over 230,000 consisting of the potential, current, and process
time for different Zr concentrations and scan rates. It should be
noted that some conditions are being repeated two to three times
(see Table 1). The training data sets are pointed in shade and the
200 mV/s and 450 mV/s in three structures; (a) [9, 13, 1–30], (b) [9, 15, 1–30], (c) [9,
terpretation of the references to colour in this figure legend, the reader is referred to



Fig. 10. Three hidden layers with 1–30 neurons and 1–30 validation checks for 0.5 wt% at 200 mV/s and 450 mV/s in three structures; (a) [10, 6, 1–30], (b) [10, 11, 1–30], and
(c) [10, 26, 1–30] (Black circle = short simulation time; Red circle = long simulation time). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Final results related to Figs. 8–10.

200 mV/s Min
Ave Error %

450 mV/s Min
Ave Error %

Validation
Checks

200 mV/s Min
Ave Error %

450 mV/s Min
Ave Error %

Validation
Checks

[8 13 13] 12 8 16 [91511] 12 15 12
[8 13 16] 12.29 20.58 11 [91514] 9.8 49 17
[8 13 21] 16.44 9.82 27 [91515] 15 8 16
[8 13 22] 12.86 10.05 5 [91517] 7.80 12 7
[8 13 25] 16.16 9.52 9 [91520] 8.76 12.22 7
[8 17 7] 12.50 14.74 16 [9215] 10.85 44 20
[8 17 12] 9 14 28 [9216] 28.86 10.74 29
[8 17 14] 22.43 10 21 [9217] 9.72 9.32 27
[8 17 16] 13.76 10.69 23 [92111] 12.97 8.58 19
[8 17 17] 8.35 12.22 15 [101113] 12.43 12.7 18
[8 17 18] 10.74 21.15 15 [101123] 9 16 26
[8 17 21] 41.52 9.21 17 [101125] 11 11 19
[9 13 15] 6.70 12 19 [10265] 18.16 9.24 17
[9 13 19] 8.45 11.90 30 [10267] 7.84 8.81 20

[9 15 10] 9.94 10.30 18 [10269] 26.69 6.04 27

248 S. Rakhshan Pouri et al. / Annals of Nuclear Energy 111 (2018) 242–254
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test data sets are indicated in clear-white. Two conditions of 0.5 wt
% at 200 and 450 mV/s are considered as train and test samples for
further discussion.

The framework proposed in this paper entailed running ANN on
different hidden layers (1–3) with various neurons (1–30) at sev-
eral validation checks (1–30). The ANN routine was applied on
one hidden layer with different neurons and each at different val-
idation checks. The general schematic flow diagram of the compu-
Fig. 11. RMSE of test sample for fou

Fig. 12. Comparison of CV plot for 0.5 wt% ZrCl4 at 200 mV/s, (a): [9, 15, 10]-18 (b): [9, 2
dash line = ANN prediction). (For interpretation of the references to colour in this figure
tational procedures is shown in Fig. 5. The average percent error
between experimental and predicted data sets for 0.5 wt% at 200
and 450 mV/s was calculated, as the train and the test samples,
respectively. Then, the structure of both cases (200 and 450 mV/
s) that provided a minimum average percent error was selected.
The mean absolute percentage error (MAPE) between experimental
and predicted data sets for 0.5 wt% at 200 and 450 mV/s was calcu-
lated using the following expression:
r final structures with 12 runs.

1, 7]-27, (c): [10, 11, 25]-19, (d): [10, 26, 7]-20 (Blue line = experimental data, Red
legend, the reader is referred to the web version of this article.)
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MAPE ¼ 100
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t¼1

ActualValuet � ForecastValuet
ActualValuet

����

���� ð1Þ

Next, the number of hidden layer was increased to two and
three layers following the same procedure. Thus, the situation that
gave almost the same minimum average percent errors for both
200 and 450 mV/s would be used to generate the predicted CV
plots for comparison and reliability with the existing experimental
data sets.
3. Results and discussion

3.1. Determination of the first, second and third hidden layers

Fig. 6 shows the comparisons between minimum average per-
cent errors of one hidden layer with various number of neurons
and validation checks for 200 and 450 mV/s. Here, the minimum
average error for one neuron at the first hidden layer with 1–30
validation checks for 200 and 450 mV/s are 96%, and 222%, respec-
tively. The errors decrease to 45%, and 31% for 30 neurons at
200 mV/s and 450 mV/s, respectively. The points that both consid-
ered train and test samples provide the average error less than 60%
while the deviations are less than 5% have been marked by the
dashed circles. It can be seen that 8, 9, 10, and 25 neurons at the
first layer (indicated by [8], [9], [10], and [25]) meet the mentioned
Fig. 13. Comparison of CV plot for 0.5 wt% ZrCl4 at 450 mV/s, (a): [9, 15, 10]-18 (b): [9, 2
dash line = ANN prediction). (For interpretation of the references to colour in this figure
criteria. It is important to mention that enhancing the number of
neurons will increase the processing time. For example, processing
time of the first layer with 30 validation checks for 1 and 30 neu-
rons are about 18 s and 8 min, respectively. The long processing
time is the reason why the 25 neurons (see the red-dashed circle
in Fig. 6), is not being considered for the second layer study.

To investigate the second hidden layer, the results from first
hidden layer were selected as the starting point. First, we consid-
ered the case of having 8 neurons at the first hidden layer and 1–
30 neurons at the second layer, denoted by [8, 1–30], with 1–30
validation checks. The points that provide average percent errors
less than 25% for both 200 and 450 mV/s while having the differ-
ence around 2% are marked in Fig. 7. The results indicate that [8,
13], [8, 17], and [8, 30] fall within the criteria. Here, the processing
time for [8, 1] at 30 validation checks is approximately 9 min and
increases up to �31 min for the [8, 30]. Therefore, the [8, 30] case
was not selected for the third hidden layer study. As indicated in
Fig. 7(b)–(c), [9, 13], [9, 15], [9, 21], [10, 6], [10, 11], and [10, 26]
meet the mentioned criteria and can be considered for the next
hidden layer.

All the selected results from the two layers were further studied
for the third hidden layer. Criteria in this part were to select the
points that both train and test samples would yield an average
error below 12% with a difference of 1.2%; Fig. 8 displays the errors
for [8, 13] and [8, 17], respectively. In addition, the [9, 13], [9, 15],
[9, 21], [10, 6], [10, 11], and [10, 26] are shown in Figs. 9 and 10.
1, 7]-27, (c): [10, 11, 25] -19, (d): [10, 26, 7] -20 (Blue line = experimental data, Red
legend, the reader is referred to the web version of this article.)
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The red circles indicate that these structures have not been consid-
ered as the final results due to their long processing times.

Each point mentioned in Figs. 8–10 are related to a specific val-
idation check. For example, the train and test sample points for [10,
26, 5] structure in Fig. 10 are occurred at 21 and 17 validation
checks, respectively; this give the minimum average error of
�9%. Therefore, to select the proper validation check for [10, 26,
5] structure, we would routinely swab the validation checks to
assure the average minimum error. That is, the train sample points
for [10, 26, 5] structure would be verified by 17 validation checks
and vice versa. The results of this reversal technique show the
average error percent for train (using 17 validation checks) and test
samples (using 21 validation checks) are 18% and 31%, respectively.
Thus, by selecting the [10, 26, 5] with 17 validation checks, the
average error for train and test samples are, 18% and 9%, respec-
tively. These results yield a lower error in comparison to 21 valida-
tion checks. This approach was applied for all final results (black
circles) in Figs. 8–10 (all values are listed in Table 2). The structures
that provide at most 11% error for both 200 and 450 mV/s cases
with a difference about 1% are underlined and bolded in Table 2.
The final results satisfying the mentioned criteria are as follows:
[9, 15, 10]-18, [9, 21, 7]-27, [10, 11, 25]-19, and [10, 26, 7]-20.
We will refer to these results as the ‘final structure [a, b, c]-d’
where a, b, and c are the number of neurons in each layer, and d
is the number of validation checks.
Fig. 14. Comparison of CV plot for 1 wt% ZrCl4 at 300 mV/s,(a): [9, 15, 10]-18 (b): [9, 21, 7
line = ANN prediction, Green line = Diffusion model). (For interpretation of the referenc
article.)
It should be noted that the predicted results are not the same by
repeating one structure because of randomly selected weights and
biases by the computer. Therefore, each four final structures were
repeated 12 times to compare the predicted values errors for the
test sample (0.5 wt%, 450 mV/s). Fig. 11 shows that the root mean
square error (RMSE) values for predicted out comes with structure
[9, 15, 10]-18 are consistently maintaining at the same range in
comparison to other structures. The average RMSE values of 12
runs for the test sample illustrated in Fig. 11 with four mentioned
structures are within 0.004 and 0.081 while those for train samples
(0.5 wt% at 200 mV/s) are ranging from 0.002 to 0.0032. To further
prove this novel scheme, the final results were used to generate the
CV plots for comparison to actual experimental data sets.

3.2. CV comparison

The CV plots of the four final structures with three hidden layers
are being compared with experimental data sets (Figs. 12–16)
based on the discussion in the previous section. Two distinctive
colors are used to distinguish the experimental data collected by
Hoover (2014) and Hoover et al. (2014) (blue line) and the ANN
prediction (red dash line). Figs. 12 and 13 illustrate the comparison
of four cases for train and test samples. Here, it can be seen that
simulated CV curves based from all final four structures capture
unique feature of both train and test conditions well. In addition,
]-27, (c): [10, 11, 25]-19, (d): [10, 26, 7]-20 (Blue line = experimental data, Red dash
es to colour in this figure legend, the reader is referred to the web version of this



Fig. 15. Comparison of CV plot for 2.5 wt% ZrCl4 at 400 mV/s, [9, 15, 10]-18 (b): [9, 21, 7]-27, (c): [10, 11, 25]-19, (d): [10, 26, 7]-20 (Blue line = experimental data, Red dash
line = ANN prediction). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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different concentrations and scan rates were also explored to illus-
trate ANN’s predictability and limitation. For this purpose, simu-
lated CV curves for 1 wt% ZrCl4 at 300 mV/s, 2.5 wt% ZrCl4 at
400 mV/s, and 5 wt% ZrCl4 at 250 mV/s are superimposed on the
actual experimental data, as shown in Figs. 14–16, respectively.
Fig. 14 shows that the ANN simulation can capture the important
features of the CV graph such as oxidation and reduction peaks
very well; few deviations can be seen during the transition from
the cathodic sweep to anodic sweep region.

A result from the diffusion model (green line) based from
Rakhshan Pouri and Phongikaroon (2016)—using a reverse-
engineering program design and coupling various variables to trace
the trend of uranium chloride through electrorefinery in a short
time—is superimposed in Fig. 14(a) showing its ability to fit the
anodic peak. It can be seen that the diffusion model indicates a nar-
row plot coverage. In addition, when the potential is scanned in
negative direction, the CV goes far from the experimental data at
approximately �1.0 V. By comparing the result from this study to
that from the diffusion model, it is shown that this study provides
a good prediction and can display the whole trend of CV with a low
error. As seen in Figs. 15(a) and 16(a), the CV plots using [9, 15, 10]-
18 structure can capture the beginning of the reduction trend and
the oxidation shape well and are comparable to the experimental
data sets at high concentrations (>1 wt% ZrCl4) as well. Other two
structures ([10, 11, 25]-19 and [10, 26, 7]-20) provide a reasonable
job in fitting the experimental data sets. However, on the CV plots
with [9, 21, 7]-27 structure (see Figs. 15(b) and 16(b)) fail to cap-
ture the reduction features in the higher concentrations.

This outcome leads us to focus on repeatability and distribu-
tion of predicted values. Here, based on the results shown in
Fig. 11, the best repeatable structure belongs to [9, 15, 10]-18.
Thus, to prove this observation, RMSE of predicted values for
Figs. 13–16 are compared and listed in Table 3. Table 3 indicates
the structure that provides the minimum average RMSE for all
tested conditions is related to [9, 15, 10]-18 structure. The next
best structure belongs to [10, 11, 25]-19 which shows the average
RMSE of 0.0209.
4. Conclusion

We presented a study of data analysis with artificial neural net-
work for the electrorefiner used in pyroprocessing technology. We
analyzed zirconium chloride concentrations of 0.5, 1, 2.5, and 5 wt
% at different scan rates at 773 K based on the experimental data
set of Hoover (2014) and Hoover et al. (2014) to illustrate the
ANN ability of handling a complex system. The minimum input
data that can be considered as training data is 43% of over
230,000 experimental data points. One, two, and three hidden lay-
ers with 1–30 neurons at each layer, and 1–30 validation checks
have been analyzed and the minimum average percent error for
train and test samples have been calculated. This study proposed



Fig. 16. Comparison of CV plot for 5 wt% ZrCl4 at 250 mV/s, (a): [9, 15, 10]-18 (b): [9, 21, 7]-27, (c): [10, 11, 25]-19, (d): [10, 26, 7]-20 (Blue line = experimental data, Red dash
line = ANN prediction). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
RMSE for Figs. 13–16.

Weight percent (wt%), scan rates (mV/s) (a) [9, 15, 10]-18 (b) [9, 21, 7]-27 (c) [10, 11, 25]-19 (d) [10, 26, 7]-20

0.5, 450 0.00292 0.00332 0.00366 0.00698
1, 300 0.01290 0.01713 0.01491 0.01598
2.5, 400 0.03318 0.06175 0.03917 0.05144
5, 250 0.04392 0.21221 0.04515 0.05822
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a framework for applying ANN to elide the guessing approach and
omit trial and error method. Therefore, the system is able to stop at
a reasonable point without going beyond underfitting and overfit-
ting. The results demonstrate that adding hidden layers for a fix
training data set results in a smaller learning (modelling) error.
The criteria for defining first hidden layer entailed test and train
sample which provide the average percent error less than 60% with
difference around 5%. For two hidden layers, this scale was tuned
to 25% with difference below 2% and for three hidden layers; it is
limited to 12% and 1.2%. The average RMSE values of 12 runs for
test sample illustrated in Fig. 11 with four mentioned structures
can be fallen in 0.004–0.081. This amount for train samples
(0.5 wt% at 200 mV/s) is from 0.002 to 0.0032. Two selected struc-
tures shown more productive predictions are related to [9, 15, 10]-
18 and [10, 11, 25]-19. The results have shown that ANN can be
successfully deployed as an alternative method of robust signal
detection towards safeguards application in pyroprocessing
technology.
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